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3.2 Lèvy-Itô Decomposition . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 10

4 It ô Formula 11
4.1 Quadratic Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 11

4.1.1 Quadratic Variation for Stable Processes . . . . . . . . . .. . . . . . . . . . 12
4.2 Change of Variable Formula . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 12
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Introduction

If only I had the theorems! Then I should find the proofs easilyenough.
B.Riemman

The following text provides an overview on important definitions and theorems from stochastic
calculus with special focus on the class ofα−stable processes on one-dimensional real line.

In the first part of this text is introduced the class of infinitely divisible distributions and stated
Lèvy-Khinchine formula. Stable distributions as an representant of this class are defined. Further,
there is described algorithm for generating random variables from stable distributions.

The second part provides a quick excursion into definition ofLèvy process and stable process. The
link to self-simmilar processes is described.

The third section is focused on the understanding of path properties and mainly jump structure
of Lèvy processes. Firstly, there is introduced Lèvy measure as the intensity of the Poisson process,
given definition of Poisson random measure and described integration of measurable function with
respect to Poisson random measure. Finally there is formulated and explained Lèvy-Itô decomposi-
tion.

Fourth section uses the results of Lèvy-Itô decomposition and provides an insight into quadratic
variation for Lèvy processes and mainly pure jump processes. Then there is formulated change of
variable formula and provided example of its application tostochastic exponential driven by Lèvy
processes. The special example for stochastic exponentialdriven byα−stable Lèvy motion is formu-
lated and described simulation technique of such a particular example.

The fifth and last section is devoted to problematics of change of measure and building Lèvy
process via this technique. The section contains two theorems which holds for Lèvy processes in
general. These are further applied on the subclass ofα−stable Lèvy process and the result of that
investigation is formulated into Theorem 5.3.

1 Stable Distributions

1.1 Infinitely Divisible Distributions

Let us consider a probability measureµ on R and its characteristic function given by

µ̂(k) =
Z

R

eikxµ(dx), wherek∈ R

Further we denote byµn then-fold convolution probability measureµ with itself, i.e.

µn = µ∗ . . .∗µ
︸ ︷︷ ︸

n

Definition 1.1 A probability measure µ onR is infinitely divisible if, for any n∈ N, there exists a
probability measure µn onR such that µ= µn

n.

The convolution of measures is equivalent to the product of their characteristic funtions. This
gives us idea about how to verify whether the probability distribution is infinitely divisible. Having
the distributionµ, we find thenth root of its characteristic function ˆµ(k) and check if it can be choosen
as the characteristic function of some probability measure.
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For n = 0, the ’0th’ root ofµ is δ0, a Dirac measure with mass at 0.
The simplest examples of infinitely divisible distributions are Poisson and Gamma distributions,

Dirac point masses, Gaussian and stable distributions. On the other hand, uniformly distributed ran-
dom variables or binomial random variables are not infinitely divisible.

The set of infinitely divisible distributions form an Abelian group with respest to convolution.
Characteristic functions of infinitely divisible distributions are well described by Lèvy-Khinchine

formula. This formula provides a representation of the characteristic exponent. This beautifull result
is a cornerstone of the whole theory.

Theorem 1.1 (Lèvy-Khintchine formula)
Let µ is an infinitely divisible distribution onR with characteristic exponentψ(k), i.e.

µ̂(k) =
Z

R

eikxµ(dx) = e−ψ(k), k∈ R

then

1.

ψ(k) = −iγk+
σ2k2

2
−

Z

{|x|≥1}

(eikx−1)ν(dx)−
Z

{|x|<1}

(eikx−1− ikx)ν(dx) (1)

whereγ ∈ R, σ ≥ 0 andν is a measure onR satisfying

ν({0}) = 0 and
Z

R

min(|x|2,1)ν(dx) < ∞ (2)

2. The representation ofµ̂(x) in (1) byσ,ν andγ is unique.

3. Conversely, ifσ ≥ 0, ν is measure satisfying conditions in (2), andγ ∈ R, then there exists an
infinitely divisible distribution µ whose characteristic exponentψ(k) is given by (1).

Definition 1.2 We call(σ,ν,γ) from Theorem 1.1 thegenerating tripletof infinitely divisible distribu-
tion µ. ν is calledLèvy measureof µ andσ Gaussian component of distribution µ.

To condsider simple examples, Gaussian distribution with meanγ and varianceσ2 has generating
triplet (σ,0,γ), Poisson distribution with parameterλ has generating triplet(0,0,λδ1). To Dirac mass
at pointzcorresponds triplet(0,0,z).

The integral
Z

R

(eikx−1− ikx)ν(dx)

is integrable, because it is bounded outside neighbourhoodof 0 and for fixedk

eikx−1− ikx1{0<|x|<1})ν(dx) as|x| → 0

There other ways for getting integrability by choosing correctly thecentering function.

Definition 1.3 Let c: R → R is bounded and measurable function, satisfying
Z

R

(eikx−1− ikc(x))ν(dx) < ∞ for any fixed k

We call c(x) the centering function.
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Then we can reformulate Lèvy-Khinchine formula as

ψ(k) = −iγck+
σ2k2

2
−

Z

R

(eikx−1− ikxc(x))ν(dx)

with
γc = γ+

Z

R

x(c(x)−1{0<|x|<1})ν(dx)

and obtain characteristic triplet(σ,ν,γc) for infinititely divisible measureµ. which corresponds to
different parametrization.

Obviously sufficient requirement onc(x) is

c(x) = 1+o(|x|) as|x| → 0

c(x) = O
( 1
|x|
)

as|x| → ∞

The following choices ofc(x) are sometimes used

c(x) = 1{0<|x|≤ε}(x) with ε > 0

c(x) =
1

1+ |x|2

c(x) = 1{0<|x|≤1}+
sgn(x)

x
1{1<|x|}

c(x) =
sin(x)

x

The centering function obviously affects the representation of theγ term in the formula. For this
reason, one has to be carefull with choosing different parametrizations and the choice should depend
on the form of Lèvy measure.

1.2 Stable Distributions

Stable distributions belongs to the class of infinitly divisible distributions. Their characteristic expo-
nent can be represented by Lèvy-Khinchine formula. There are other possible ways of representations,
see e.g. Zolotarev [6]. In the following, we firstly give definition of the the stable measure and then
state theorem which gives most commonly used represantation of characteristic exponent of stable
random variable.

Definition 1.4 Let µ is infinitely divisible probability measure onR. It is called stableif, for any
a > 0, there exist b> 0 and c∈ R s.t.

µ̂(k)a = µ̂(bk)eick

It is calledstrictly stableif, for any a> 0, there is b> 0 s.t.

µ̂(k)a = µ̂(bk)
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We define the stable ditribution by its characteristic function which uniquely determines the form
of it.

The Lèvy measure for a real valued stable variable is expressed as

ν(dx) =

{
c1

xα+1 1{x>0} + c2
|x|α+1 1{x<0} for 0 < α < 2 andc1,c2 ≥ 0,c1 +c2 > 0

0 for α = 2

We see that forα = 2 we have Gaussian distribution. For 0< α < 2 the generating triplet is(0,ν,γ)
where Lèvy measure is written above. According the Lèvy-Khinchine formula the characteristic
exponent of the stable distribution can be rewriten as

ψ(k) = iγk+c1

∞
Z

0

(eikx−1− ikx
1+x2)

1
x1+α (dx)+ (3)

+c2

0
Z

−∞

(eikx−1− ikx
1+x2 )

1
|x|1+α (dx) (4)

Note, that we here we used centering functionc(x) = 1
1+|x|2 The representation in the following

theorem is often used as the definition ofα−stable law.

Theorem 1.2 Let0 < α < 2 and µ is non-trivialα−stable measure, then

ψ(k) =

{

σ|k|α(1− iβsgn(k) tan(πα
2 ))− iγk for α 6= 1

σ|k|(1+ iβ( 2
π sgn(k) log|k|)− iγk for α = 1

(5)

with σ > 0,β ∈ [−1,1] andγ ∈R. Hereσ,β andγ are uniquely determined by µ. Conversely, for every
σ > 0,β ∈ [−1,1] and γ ∈ R, there is non-trivialα−stable ditribution µ satisfying (5). A necessary
and sufficient condition for a non-trivialα−stable distribution to be strictlyα−stable is thatγ = 0 or
that β = 0, according asα 6= 1 or α = 1.

The parameters from the previous theorem has the following meaning:α ∈ (0,2] is calledstability
parameter,β ∈ [−1,1] is skewnessparameter,σ > 0 scaleparameter andγ ∈ R corresponds toshift
parameter.

The parameterβ represents non-symmetry of the Lèvy measure.ν is symmetric only ifβ =
0. For β = 1 the support of the measure is the positive part of real line,for β = −1 is the Lèvy
measure concentrated only on negative part of real line. Other useful link between Lèvy measureν
and skewness parameterβ is thatβ = c1−c2

c1+c2
wherec1,c2 ≥ 0,c1 +c2 > 0 are constants from the Lèvy

measure.
If random variableZ hasα−stable distribution with parametersσ,β andγ we use notationZ ∼

Sα(σ,β,γ). For symetric stable random variableZ ∼ Sα(1,0,0) we use shorter notationZ ∼ SαS

1.3 Simulating from Stable Distribution

The densities forα−stable processes are in general not known in closed form. Theonly known
densities are for Gaussian, Cauchy and Lèvy distribution.The following theorem provides us with an
algoritm for simulating from stable distributions.
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Theorem 1.3 Let V is uniformly distributed random variable on the interval (−π
2, π

2), W is expo-
nentialy distributed random variable with mean 1, V and W areindependent random variables and
α ∈ (0,2].

For anyβ ∈ [1,1] andα 6= 1, defineθ0 = arctan(β tan(πα/2))
α .

Then random variable Z defined by

Z =







sinα(θ0+V)

(cosαθ0 cosV)1/α

[

cos(αθ0+(α−1)V)
W

] 1−α
α

α 6= 1

2
π

[

(π
2 + βV) tanV −β log

(
π
2WcosV

π
2+βV

)]

α = 1

has Sα(1,β,0) distribution.

Remark 1.1 In case of symmetric stable distribution, i.e. forβ = 0 the formula from previous theorem
can be considerably simplified. Following the notation fromTheorem 1.3, the random variable

Z =







sin(αV)

(cosV)1/α

[

cos((α−1)V)
W

] 1−α
α

α 6= 1

tanV α = 1

has SαS distribution.

Let us take a closer look on the numberθ0 from Theorem 1.3. Consider random random variable
Z with Sα(σ,β,0) distribution. Defineρ = P(Z ≥ 0). In Zolotarev [6], section 2.6 is shown that
the probability ofα−stable random variable having non-negative value depends only on the stability
parameterα and the skewness parameterβ and can be computed forα 6= 1,2 as

ρ =
1
2

+
arctan(β tan(πα/2))

πα
.

ρ is called positivity parameter. Observe, thatρ does not depend on the scaling parameterσ. For
0< α < 1, ρ ranges over interval[0,1], whereas for 1< α < 2, ρ ranges over[1− 1

α , 1
α ]. The boundary

points ρ = 0 for α ∈ (0,1) andρ = 1− 1
α for α ∈ (1,2), respectively, corresponds to the situation

that random variableZ takes negative values only. Analogically, the boundary points ρ = 1 for α ∈
(0,1) andρ = 1

α for α ∈ (1,2) corresponds to the situation thatZ has non-negative values only. For
symmetric stable distributions, i.e. forβ = 0, the positivity parameterρ has value1

2. We see that
ρ = 1

2 + θ0
π whereθ0 contains the relation between skewness and stability parameter.

2 Stable processes

2.1 Lèvy processes

Stable processes form a subclass of more general class of Lèvy processes. Assume we are on filtered
probability space(Ω,F ,F,P) . Let us recall definition of the Lèvy process .

Definition 2.1 An adapted process X= {X(t), t ≥ 0} is a Lèvy processif

1. X has increments independent of the past; i.e.
X(t)−X(s) is independent of theFs, 0≤ s< t < ∞
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2. X has stationary increments, i.e.
X(t)−X(s) has same distribution as X(t −s) for 0≤ s< t < ∞

3. X(t) is continuous in probability, i.e.

lim
t→s

P(ω ∈ Ω : |X(ω, t)−X(ω,s)| > ε) = 0

For eacht > 0 the distribution of Lèvy processX(t) is infinitely divisible. It can be shown also
that for each infinitely divisible probability measureµ there exists Lèvy processX s.t.µ is distribution
of X(1). The following theorem gives us idea about important path property of Lèvy processes.

Theorem 2.1 Let X be a L̀evy process. There exists a unique modification Y of X which isrigh
contiuous and has limits from left ( càdlàg) and which is also a L̀evy process .

2.2 α−stable Lèvy Motion

Consider filtered probability space(Ω,F ,F,P) and on this space consider Lèvy processLα,β =
{Lα,β(t), t ≥ 0} . In the following we will call the stochastic processLα,β = {Lα,β(t), t ≥ 0} α−stable
Lèvy motionif

1. Lα,β(0) = 0 P−a.s.

2. Lα,β(t) has independent increments

3. Lα,β(t)−Lα,β(s) ∼ Sα((t −s)1/α,β,0) for any 0≤ s< t < ∞

Simply said,Lα,β = {Lα,β(t), t ≥ 0} is a Lèvy process ifLα,β(t) hasα-stable distribution. Only
the scale parameter changes during time, the stability and scale parameteres does not depend on time
and remains constant for allt > 0.

Definition 2.2 X = {X(t), t ≥ 0} is a Lèvy process onR. It is called stableor strictly stableif the
distribution of X(1) is, respectively, stable or strictly stable.

Definition 2.3 X = {X(t), t ≥ 0} is a stochastic process onR. It is calledselfsimilarif, for any a> 0,
there exists b> 0 s.t.

{X(at), t ≥ 0} d
= {bX(t), t ≥ 0}

It is calledbroad-sense selfsimilarif, for any a> 0, there exists b> 0 and maping c: R
+ → R s.t.

{X(at), t ≥ 0} d
= {bX(t)+c(t), t ≥ 0}

The property of selfsimilarity means that when performing scaling changes in the time domain of
the process one has to count with a scaling effect in a spatialdomain of the process. The broad-sense
selfsimilarity is slightly generous concept. Here, when wescale time of the process, the result-
ing change for the value of the process corresponds to composite mapping where the value of the
stochastic process without time change is linearly transformed to capture the time scaling.

The corespondence between stable and selfsimilar Lèvy processes is very straightforward. Having
Lèvy processX = {X(t), t ≥ 0} on R, it is selfsimilar if and only if it is a strictly stable process.
Analogically, for broad-sense selfsimilar Lèvy process and stable process. From the Definition 2.3
is obvious, that selfsimilar or broad-sense selfsimilar process does not have to be Lèvy process . If,
however, it is a Lèvy process , then it can be only strictly stable or stable process. The class of stable
processes is thus intersection of Lèvy processes and broad-sense selfsimilar processes.
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3 Poisson Random Measures

Let us start with introducing the concept of Poisson random measures which is crucial for good
understanding of behaving of the jump structure of Lèvy process .

Consider Lèvy processX = {X(t), t ≥ 0} on the filtered probability space(Ω,F ,F,P) . Denote
by X(t−) = lims→t− X(s) and by∆X(t) := X(t)−X(t−) the jump of the processX at timet; theorem
2.1 guarrantes that the trajectory of the Lèvy process is c`adlag. Consider borel subsetU ∈ B(R\0),
s.t. 0/∈ Ū whereŪ is the closure of set U, i.e. we consider setU to be bounded away from 0. For
t > 0 define:

N(t,U) := ∑
0≤s≤t

1U (∆X(s)),

that is the number of jumps of size∆X(s) ∈U,s∈ [0, t] which occurs up to timet. AsU is bounded
away from 0,N(·) really counts jumps of the process. Let us further define random variables

TU
1 = inf{t > 0 : ∆X(t) ∈U}

...

TU
n+1 = inf{t > TU

n : ∆X(t) ∈U}

The sequence{TU
i }, i = 1,2, . . . is the sequence of random times in which the jumps are of sizeU

at maximum. The sequence of times of repeated entrances intoU is obviously a stopping time as
{t ≤ TU

n } ∈ Ft+ = Ft (X has càdlag trajectories and filtration is complete and right-continuous).
We can further rewrite the variableN(t,U) in terms of number of times of jump events which

occur up till timet:

N(t,U) := ∑
0≤s≤t

1U(∆X(s)) =
∞

∑
n=1

1{TU
n ≤t} (6)

It can be argued thatN(t,U) is a counting process, without explosion, with stationary and independent
increments which directly implies thatN(t,U) is a Poisson process; see Protter [4], p.26.

Let us define Lèvy measureν(U) of processX in terms of expected number of jumps of size inU
over time unit:

ν(U) := E[N(1,U)], U ∈ B(R\0).

Lèvy measureν(U) is the intensity of the Poisson processN(t,U) and is finite because Poisson
process has bounded jumps and every Lèvy process with bounded jumps has finite moments of all
orders; see Protter [4], Theorem 34, p.25.

MappingU → N(t,U) defines aσ−finite meausure onU . Let us summerize the above into the
definition of Poisson random measure.

Definition 3.1 Consider probability space(Ω,F ,P) and σ−finite measurable space(E,E ,µ). A
family of non-negative integer valued random variables{N(U),U ∈ E} is called aPoisson random
measureon E with intensity µ, if the following hold:

1. for every U, N(U) has Poisson distribution with mean µ(U).

2. if U1, . . . ,Un are disjoint, then N(U1), . . . ,N(Un) are independent

3. for everyω ∈ Ω, N(·,ω) is a measure on(E,E)

8



Remark 3.1 1. N(t,U) is a Poisson random measure with intensity measureν(U); see Sato [5],
Theorem 19.2 (i), p.120.

2. Ñ(·, ·) denotes compensated jump measure defined byÑ(t,U) := N(t,U)− tν(U). It is easy to
check thatEÑ(t,U) = 0.

3.1 Integrals with respect to Poisson Random Measures

Consider borel measurable functionf which is finite on the setU ∈ B(R \0). Then its very natural
to the sum of jumps of size inU mapped byf , up till time t.

I(t,U) =

Z

U
f (x)N(t, ·,dx) = ∑

0<s≤t

f (∆X(s))1U(∆X(s))

ProcessI(U) = {I(t,U), t ≥ 0} is again a Lèvy process. For specific choice off (x) = x we obtain

J(t,U) =
Z

U
xN(t, ·,dx) = ∑

0<s≤t

∆X(s)1U(∆X(s))

ProcessJ(t,U) is calledassociated jump processand it is sum of jumps inU up till time t. The
processY = {Y(t) = X(t)− J(t,U), t ≥ 0} will remain also Lèvy process. See Protter [4], Theorem
37, p.27.

ChooseU = R \ (0,1), then processY is the Lèvy process without big jumps (jumps bigger then
1),

Y(1, t) = X(t)−J(t,R\ (0,1)) = X(t)−
Z

|x|≥1
xN(t, ·,dx)

Let us state theorem from Protter [4], Theorem 38, p.28 whichdescribes behaving of the Lèvy
measure in terms of expactation of the integral with respectto Poisson random measure.

Theorem 3.1 Let U be a Borel set with0 /∈ Ū. Letν be the L̀evy measure of X, and let f1U ∈ L(dν).
Then

E

(Z

U
f (x)N(t, ·,dx)

)

= t
Z

U
f (x)ν(dx)

If further f1U ∈ L2(dν) then

E

([Z

U
f (x)N(t, ·,dx)− t

Z

U
f (x)ν(dx)

]2)

= t
Z

U
f (x)2ν(dx)

Another important property of associated jump process is its behaving on the disjoint sets. Con-
sider two disjoint Borel setsU1,U2 bounded away from 0. Consider processes

J(t,U1) = ∑
0<s≤t

∆X(s)1U1(∆X(s))

and
J(t,U2) = ∑

0<s≤t

∆X(s)1U2(∆X(s))

These will be independent Lèvy processes.
The following two theorems provide view on the Lèvy processes as semimartingales, see Protter

[4] Theorem 40, 41, p.30. The first theorem tells us that we candecompose the Lèvy process into
martingale and finite variation process. The second theoremgives us idea about construction of the
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martingale for Lèvy process with bounded jumps. For the Lèvy process with bounded jumps, we
can construct the martingale by compensating the original Lèvy process with its expected value and
this martingale can be decomposed into the continuous part and jump part. The continuous part of
the martingale is a Brownian motion, the jump part of the martingale is infinite sum of compensated
Poisson processes. These two new processes are again Lèvy processes and are independent.

Theorem 3.2 Let X = {X(t), t ≥ 0} is a Lèvy process . Then X(t) = V(t)+ M(t), where V, M are
Lèvy processes, V has paths of finite variation and M is a martingale with bounded jumps, i.e. M is
process with finite moments of all orders.

Theorem 3.3 Let X= {X(t), t ≥ 0} be a L̀evy process with bounded jumps by a, i.esup0<s≤t |X(s)| ≤
a a.s. Let M(t) = X(t)−EX(t). Then M is a martingale and M(t) = M(t)c +M(t)d where M(t)c is a
martingale with continuous trajectories and Md is a martingale

Md(t) =

Z

{|x|≤a}
x(N(t, ·,dx)− tν(dx)) =

Z

{|x|≤a}
x(Ñ(t, ·,dx)

Mc and Md are independent L̀evy processes.

3.2 Lèvy-Itô Decomposition

Using the results from previous subsection, we state a very beautifull result which provides us with
clear insight into the properties of trajectories of Lèvy process .

Theorem 3.4 Let X = {X(t), t ≥ 0} is Lèvy process onR with generating triplet(σ,ν,γ) and jump
measure N(t, ·,dx) of process X, i.e. N(t, ·,dx) is a Poisson random measure. Then the process X can
be decomposed into three mutually independent Lèvy processes, for all t≥ 0, P−a.s.:

X(t) = X1(t)+X2(t)+X3(t)

such that

X1(t) = γt + σ2W(t) where W(t) denotes Wiener process (7)

X2(t) = lim
ε→0+

Z t

0

Z

{ε<|x|<1}
x(N(ds, ·,dx)−ν(dx)ds) (8)

X3(t) =

Z t

0

Z

{1≤|x|<∞}
xN(ds, ·,dx) (9)

The convergence in X2(t) is uniform in t on any bounded interval.

The Lèvy-Itô decomposition allows us to decompose any Lèvy process into three independent
processes, the drifted Brownian motion, process of big jumps and a martingale process of small
jumps. In the following we describe the conection with Lèvy-Khinchine formula. Recall first the
form of characteristic exponent of distribution of increments of Lèvy process:

ψ(k) = −iγk+
σ2

2
−

Z

{|x|≥1}

(eikx−1)ν(dx)−
Z

{|x|<1}

(eikx−1− ikx)ν(dx) (10)

The first part of the formulaψ1(k) = −iγk+ σ2

2 clearly corresponds to characteristic function of
the distribution of linearly drifted Brownian motion. Thatis exactly processX1(t) in the Lèvy-Itô
decomposition.
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The second part of the formulaψ2(k) =
R

{|x|≥1}(e
ikx−1)ν(dx) is the characteristic function of the

compound Poisson process with intensityν(R\ (−1,1)) and size of jumps distributed according law
ν(dx)

ν(R\(−1,1)) where Lèvy measure is supported onR\ (−1,1). It corresponds to processX3(t), i.e. the
part of big jumps is driven by compound Poisson process with intesity characterized by the size of the
real line without unit ball centered in origin measured by L`evy measure and distribution of the jumps
corresponds to Lèvy measure standartized by the intesity of driving Poisson process.

The last part of the formulaψ3(k) =
R

{|x|<1}
(eikx − 1− ikx)ν(dx) is an infinite sum of drifted

compound Poisson processes with different intensities anddistributions. To see it, denote byλn =

ν({x;2−(n+1) ≤ |x| < 2−n}) the intensity of Poisson process and byFn(dx) = ν(dx)
ν({x;2−(n+1)≤|x|<2−n}) the

distribution of the jumps, with support on{x;2−(n+1) ≤ |x| < 2−n}. Then we can rewriteψ3(k) as

∑
n≥0

[

λn

Z

(2−(n+1),2−n)
(eikx−1)Fn(dx)− ikλn

(Z

(2−(n+1),2−n)
xFn(dx)

)]

The processX2(t) then corresponds to superposion of countable many compoundPoisson processes.
Sometimes is this part of the Lèvy process calledsum of compensated jumps. Due to additional
drift, the Lèvy measure on(−1,1) is compensated. Without compesation, the limit inX2(t) may not
converge asε approaches 0.

4 It ô Formula

4.1 Quadratic Variation

Consider a filtered probability space(Ω,F ,F,P) and a semimartingale with càdlàg trajectories on it.
The quadratic variation process is then defined as follows.

Definition 4.1 Let X = {X(t), t ≥ 0} be a semimartingale. Thequadratic variation process[X,X] =
{[X,X](t), t ≥ 0} of X is defined by:

[X,X](t) = X(t)2−2
Z t

0
X(s−)dX(s)

The quadratic variation process ofX is càdlàg, increasing, adapted process. The starting value of
the process is[X,X](0) = X(0)2. The incremeants of the process are∆[X,X](t) = (∆X(t))2.

More usefull from computational point of view is the following construction. Letπ(t) = {0= t0 <
t1 < .. . < tk = t} denotes the partition of the time interval[0, t]. Further consider the sequence of time
partitionsπn(t) = {0= tn

0 < tn
1 < .. . tn

kn
= t} with supremum norm defined as|πn(t)| = sup1≤i≤kn

|tn
i −

tn
i−1| and lim

n→0
|πn(t)| = 0. Then quadratic variation is the limit in probability of squared increments of

the processX, uniformly continuous in time

lim
n→∞

P
(

ω ∈ Ω : sup
0≤s≤t

∣
∣
∣X(0,ω)2 +

kn

∑
i=1

(X(tn
i ,ω)−X(tn

i−1,ω))2− [X,X](t,ω)
∣
∣
∣> ε

)

= 0

See Protter [4], Theorem 22, p.66.
The quadratic variation process can be decomposed into its continuous part and pure jump part.

We denote the path-by-path continuous part of[X,X] as[X,X]c. We can then write the process in the
following form

[X,X](t) = [X,X]c(t)+X(0)2 + ∑
0<s≤t

(∆X(s))2 = [X,X]c+ ∑
0≤s≤t

(∆X(s))2
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If the contiuous part is equal to zero, then

[X,X](t) = ∑
0≤s≤t

(∆X(s))2

4.1.1 Quadratic Variation for Stable Processes

Let us formulate the quadratic variation process for a Lèvyprocess. Consider Lèvy process with
characteristic triplet(σ,ν,γ) Then the quadratic variation is given by

[X,X](t) = σ2t + ∑
0<s≤t

(∆X(s))2 = σ2t +
Z t

0

Z

R\0
x2N(dt, ·,dx)

Considerα−stable Lèvy motionLα,β = {Lα,β(t), t ≥ 0} . Then forα = 2 the quadratic variation
process is a continuous increasing process, whereas for 0< α < 2 the quadratic variation is the sum
of squared jumps.

[X,X](t) =







∑
0≤s≤t

(∆X(s))2 =
R t

0

R

R\0 x2N(dt, ·,dx) for 0 < α < 2

σ2t for α = 2

4.2 Change of Variable Formula

Let us start with the general version of change of variable formula for semimartingales, i.e. situation
when one needs to map the semimartingale via the twice differentiable continuous function. Consider
filtered probability space(Ω,F ,F,P) and letX = {X(t), t ≥ 0} denote a semimartingale with càdlàg
trajectories. The Itô’s Formula has to capture also discontinuity term and is of following form:

Theorem 4.1 Let X = {X(t), t ≥ 0} be a semimartingale and let f∈ C2(R). Then f(X) is again a
semimartingale, and the following formula holds:

f (X(t))− f (X(0)) =

Z t

0+
f ′(X(s−))dX(s)+

1
2

Z t

0+
f ′′(X(s−))d[X,X]c(s)+

+ ∑
0<s≤t

(

f (X(s))− f (X(s−))− f ′(X(s−))∆X(s)
)

(11)

Remark 4.1 The second term on the right side is given by

f ′′(X(t−))d[X,X](t) = f ′′(X(t−))[X,X]c(t)+ f ′′(X(t−))(∆X(t))2

and so the relation in (11) can be equivalently written as

f (X(t))− f (X(0)) =

Z t

0+
f ′(X(s−))dX(s)+

1
2

Z t

0+
f ′′(X(s−))d[X,X]c(s)+ ∑

0<s≤t

f ′′(X(s−))(∆X(s))2+

+ ∑
0<s≤t

(

f (X(s))− f (X(s−))− f ′(X(s−))∆X(s)− f ′′(X(s−))(∆X(s))2
)

12



Consider now a Lèvy processX = {X(t), t ≥ 0} on the filtered probability space(Ω,F ,F,P) .
Lèvy process has generating triplet(σ,ν,γ). Further considerf ∈ C2(R) and processY = {Y(t) :=
f (X(t)), t ≥ 0}. Applying Theorem 4.1 and using notation introduced in section 3.1 we derive

Y(t) = f (X(0))+

Z t

0
f ′(X(s−))dX(s)+

1
2

Z t

0
σ2 f ′′(X(s−))ds+

+

Z t

0

(

f (X(s−)+z)− f (X(s−))−z f′(X(s−))
)

N(ds, ·,dz)

Recall now Lèvy-Itô decomposition and rewritedX(s) asdX1(s)+dX2(s)+dX3(s).

Y(t) = f (X(0))+
Z t

0
γ f ′(X(s))ds+

Z t

0
σ2 f ′(X(s))dW(s)+

+

Z t

0

Z

{0<|z|<1}
z f′(X(s−))Ñ(ds, ·,dz)+

Z t

0

Z

{1≤|z|<∞}
z f′(X(s−))N(ds, ·,dz)+

+
1
2

Z t

0+
f ′′(X(s−))σ2 ds+

Z t

0

Z

R\0

(

f (X(s−)+z)− f (X(s−))−z f′(X(s−))
)

N(ds, ·,dz)

Recall thatÑ(dt, ·,dx) = N(dt, ·,dx)+ ν(dx)dt and reorder the equation.

Y(t) = f (X(0))+

Z t

0
σ2 f ′(X(s))dW(s)+

Z t

0

Z

R\0
z f′(X(s−))Ñ(ds, ·,dz)+

+
Z t

0

[

γ f ′(X(s))+
1
2

f ′′(X(s−))σ2 +
Z

R\0

(

f (X(s−)+z)− f (X(s−))−z f′(X(s−))1{0<|x|<1}
)

ν(dz)
]

ds

Theorem 3.2 states that we can decompose Lèvy process into martingale with bounded jumps and
process with paths of finite variation. For the considered processY we see that process with paths of
finite variation is

V(t)=

Z t

0

[

γ f ′(X(s))+
1
2

f ′′(X(s−))σ2+

Z

R\0

(

f (X(s−)+z)− f (X(s−))−z f′(X(s−))1{0<|x|<1}
)

ν(dz)
]

ds

and the martingale part

M(t) = f (X(0))+
Z t

0
σ2 f ′(X(s))dW(s)+

Z t

0

Z

R\0
z f′(X(s−))Ñ(ds, ·,dz)

Using the previous results let us introduce theItô-Lèvy processand fomulate the change of variable
formula for it in differential notation. Consider again a L`evy processX = {X(t), t ≥ 0} and predictable
processesu= {u(t), t ≥ 0} v= {v(t), t ≥ 0} andw= {w(t), t ≥ 0}. From the Lèvy-Itô decomposition
we callX theItô-Lèvy processif it is given as follows

X(t) = x0 +
Z t

0
u(s)ds+

Z t

0
v(s)dW(s)+

Z t

0

Z

R\0
w(s,x)Ñ(ds, ·,dx),

where for allt > 0,x∈ R\0
Z t

0

(

|u(s)|+v2(s)+
Z

R\0
w2(s,x)ν(dx)

)

ds< ∞, P−a.s.

13



This condition implies that the stochastic integrals are well-defined and local martingales.
One uses the short-hand differential notation:

dX(t) = u(t)dt +v(t)dW(t)+

Z

R\0
w(t,x)Ñ(dt,dx); X(0) = x0

Let f : R
+×R → R be a function inC1,2(R+×R) and define process:

Y(t) := f (t,X(t)), t ≥ 0.

Then the processY = {Y(t), t ≥ 0} is also an Itô-Lèvy process and its differential form is given by

dY(t) =
∂ f
∂t

(t,X(t))dt +
∂ f
∂x

(t,X(t))u(t)dt +

+
∂ f
∂x

(t,X(t))v(t)dW(t)+
1
2

∂2 f
∂x2 (t,X(t))v2(t)dt +

+
Z

R\0
[ f (t,X(t)+w(t,z))− f (t,X(t))− ∂ f

∂x
(t,X(t))w(t,z)]ν(dz)dt +

+

Z

R\0
[ f (t,X(t−)+w(t,z))− f (t,X(t−))]Ñ(dt,dz)

4.3 Stochastic Exponential Driven by L̀evy process

In this part we investigate the simple example of the stochastic differential equation which solution is
calledDoleéns-Dade exponential.

Theorem 4.2 Let X= {X(t), t ≥ 0} be a L̀evy process with characteristic triplet(σ,ν,γ). Then there
exists a c̀adlàg process Z= {Z(t), t ≥ 0} that is the unique solution to the equation

Z(t) = 1+

Z t

0
Z(s−)dX(s)

Z is calledstochastic exponentialof X, denoted by Z= E(X) and is expressed by

Z(t) = exp
{

X(t)− σ2t
2

}

∏
0<s≤t

(1+ ∆X(s))exp
{

−∆X(s)+
1
2
(∆X(s))2

}

where the infinite product converges.

The above stated result holds for semimartingales in general, see Protter [4], II.8,p.84.

If X is α−stable Lèvy motionLα,β = {Lα,β(t), t ≥ 0} , the stochastic exponentialZ is

Z(t) =







∏0<s≤t(1+ ∆Lα,β(s))exp
{

−∆Lα,β(s)+ 1
2(∆Lα,β(s))

2
}

for 0 < α < 2

exp
{

W(t)− σ2t
2

}

for α = 2

whereW(t) denotes Brownian motion.
The stochastic exponential driven byα−stable Lèvy motion is always positive forα = 2 and cor-

responds to geometric Brownian motion. On the other hand if stability parameterα has value from
(0,2), the stochastic exponential can take even negative values.Important role plays obviously initial
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Figure 1: 15 trajectories of stochastic exponential drivenby α−stable Lèvy motion with parameters
α = 1.7, andβ = 0.3

value of stochastic exponentialZ and size of jumps of the process. In our caseZ(0) = 1. If the sizes
of the jumps ofLα,β are biger then the initial value 1, stochastic exponential can take negative values.

It is possible to simulate trajectory of the stochastic exponential driven byα−stable Lèvy motion
according the algorithm outlined in Janicki et al. [3]. The main idea is that the solution of the
equation:

Z(t) = Z0 +

Z t

0
Z(s−)dLα,β

can be aproximated by

Zn(t) = Zn,0

[nt]

∏
k=1

(

1+
Yk

φ(n)

)

whereYk,k = 1,2, . . .n are i.i.d sequence ofYk ∼Sα(1,β,0) andφ(n) is slowly varying function which
is choosen asφ(n) = n1/α.

In the following figures we depicted trajectories of stochastic exponential driven byα−stable
Lèvy motion for different stability parameters. The observation which one can make is that with
stability parameter closer to 2, the process has less big jumps. Also important observation is that if
the increment of the process is very close to or exactly the initial value, stochastic exponential can
then remain very close to 0.
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Figure 2: 15 trajectories of stochastic exponential drivenby α−stable Lèvy motion with parameters
α = 1.9, andβ = 0.3
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Figure 3: 15 trajectories of stochastic exponential drivenby α−stable Lèvy motion with parameters
α = 1.3, andβ = 0.3
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Figure 4: 15 trajectories of stochastic exponential drivenby α−stable Lèvy motion with parameters
α = 2, andβ = 0, i.e. geometric Brownian motion

5 Change of Measures

Consider measurable space(Ω,F ) with two probability lawsP andQ. Further assume thatP andQ
areequivalentprobability measures, i.e.P≪ Q andQ≪ P, whereP≪ Q means that measureP is
absolutly continuous with respect to measureQ:

∀F ∈ F : Q(F) = 0 =⇒ P(F) = 0

The equivalence of the measures is also sometimes calledmutual absolut continuousnessof measures
P andQ. We writeP∼ Q to denote equivalence.

Let us endow the measurable space(Ω,F ) with two equivalent probability measuresP,Q and
consider two probability spaces(Ω,F ,P) and(Ω,F ,Q) . We know that possible events can occur
on these spaces with same or different non-zero probabilities. By assuming the equivalence of the
measures, we are, however, ensured that the events which occur with probability zero in one space
will remain impossible also in the other probability space.In other words measuresP andQ have the
same support or equivalently same null sets.

Consider restriction of the probability measureP to Ft and denote it asPt = P|Ft . Analogically
denoteQt = Q|Ft . As the measuresP,Q are considered on the same stochastic bases, i.e. measure-
able space with the filtration, then also the restrictionsPt ,Qt of the equivalent measuresP,Q at timet
remains equivalent for allt ≥ 0. The Radon-Nikodym theorem ensures us that at every time moment
t there exists a measurable mappingD(t), s.t. Qt =

R

AD(t)dPt for all A ∈ Ft . The stochastic pro-
cessD = {D(t) = dQt

dPt
, t ≥ 0} is calledderivative processof Q with respect to P. Derivative process

describes the time evolution of the density of measureQ with respect to measureP and filtration.
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Obviously, the derivative process depends on the choice of the filtration. Different filtrations induce
different derivative processes.

Let X = {X(t), t ≥ 0} be a Lèvy process on the filtered probability space(Ω,F ,F,P) . We would
like to create new Lèvy process on the probability space(Ω,F ,F,Q) from the old Lèvy processX.

• Under which conditions the new stochastic process on(Ω,F ,F,Q) remains also Lèvy process
?

• Can we somehow remove the drift part of the Lèvy process and create a martingale?

• What does happen to jump structure of the Lèvy process when we pass from one probability
space to the other?

• How can one describe the derivative process and is the derivative process also Lèvy process ?

Let us denote by(X,P) the Lèvy process with generating triplet(σP,νP,γP) on filtered probabil-
ity space(Ω,F ,F,P) . Analogically, we denote(X,Q) as the Lèvy process with generating triplet
(σQ,νQ,γQ) on the second considered space(Ω,F ,F,Q) .

The following theorem from Sato [5],33.1,p.218 gives a necessary and sufficient condition for
equivalence of the measures in term of generating triplets of the Lèvy processes.

Theorem 5.1 Let (X,P) and(X,Q) be L̀evy processes onR with generating triplets(σP,νP,γP) and
(σQ,νQ,γQ), respectively. Then the following statements are equivalent:

1. Pt ∼ Qt for every t> 0

2. the generating triplets satisfy

σP = σQ, (12)

νP ∼ νQ (13)

with the functionφ(x) defined bydνQ

dνP
= eφ(x) satisfying

Z

R

(eφ(x)/2−1)2νP(dx) < ∞ (14)

and
γQ− γP−

Z

|x|≤1
x(νQ−νP)(dx) ∈ {σ2

Px : x∈ R} (15)

If we work only with drifted diffusion, we see that the only limiting condition for us is to have
same diffusive coefficient. The assumption on the finitinessof the difference of the drift parameter
is rather natural. In case of diffusion we can freely change the drift. Now consider only pure jump
process. There we are limited on the behaving of the small jumps in terms of drift. The expected
value of the small jumps (on the unit ball) measured by the difference of the Lèvy measures has to be
equal to difference of the drifts

The following theorem from Sato [5],33.2 p.219 gives exact represantation for the derivative pro-
cess:
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Theorem 5.2 Let (X,P) and(X,Q) be L̀evy processes onR with generating triples(σP,νP,γP) and
(σQ,νQ,γQ), respectively. Suppose that equivalent conditions 1. and 2. from previous theorem are
satisfied. Chooseη ∈ R such that

γQ− γP−
Z

|x|≤1
x(νQ−νP)(dx) = σ2

Pη (16)

Then we can define, P−a.s,

U(t) = ηXc(t)− η2σ2
Pt

2
−ηγPt+ (17)

+ lim
ε→0+




 ∑

s≤t,
|∆X(s)|>ε

φ(∆X(s))− t
Z

|x|>ε
(eφ(x) −1)νP(dx)




 (18)

The convergence in the right-hand side of (6) is uniform in t on any bounded interval, P− a.s. We
have, for every t≥ 0

E
PeU(t) = E

Qe−U(t) = 1 (19)

and

dQt

dPt
= eU(t), P−a.s. (20)

The process({U(t), t ≥ 0},P) is a Lèvy process onR with generating triplet(σU ,νU ,γU ) expressed
by

σ2
U = η2σ2

P (21)

νU = [νPφ−1]R−{0} (22)

γU = −η2σ2
P

2
−

Z

R

(ey−1−y1{0<|y|≤1}(y))(νPφ−1)(dy) (23)

5.1 Equivalence of Measures for Stable Processes

Let us investigate if it is possible construct equivalent measure forα−stable Lèvy motion .
Consider filtered probability spaces(Ω,F ,F,P) and(Ω,F ,F,Q) . Denoteα−stable Lèvy motion

on (Ω,F ,F,P) as(Lα,β,P) with generating triplet(0,νP,γP) for α ∈ (0,2) and(σP,0,γP) for α = 2.
Analogically, we denoteα−stable Lèvy motion on(Ω,F ,F,Q) as(Lα,β,Q) with generating triplet
(0,νQ,γQ) for α ∈ (0,2) and(σQ,0,γQ) for α = 2.

The first quick observation which one can make forα−stable Lèvy motion is that if we have diffu-
sive process under measureP, the process under measureQ has to be also diffusive. If we have pure
jump process under measureP then also new process will be pure jump under measureQ. It means
that we definitly cannot create pure jump process from diffusive process and vice verse.

Let us first investigate simplier case forα = 2. Using Theorem 5.1 we state under which conditions
are measuresP andQ equivalent. One neccesary assumption is on diffusion termsas these have to be
equal, i.e.σP = σQ. The second assumption gives us that the difference of drifttermsγQ− γP has to
be finite number. If these conditions holds, thenPt andQt will be equivalent measures for allt ≥ 0.
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We can now use Theorem 5.2 to exactly describe the derivativeprocess. We chooseη ∈ R s.t.
γQ− γP = σ2

Pη and from there we can write

η =
γQ− γP

σ2
P

(24)

To simplify the notation we denote(L2,0,P) 2-stable symmetric Lèvy motion as(W,P), i.e. drifted
Brownian motion with drift parameterγP. Analogically, we redenote(L2,0,Q) as (W,Q). Using
the result from Theorem 5.2, expression (17) forη and continuousness of trajectories of Brownian
motion, we easily obtain stochastic processU(t), the logarithm of derivative processdP

dQ, P−a.s., in
the following form:

U(t) = −(γQ− γP)2

2σ2
P

t +
γQ− γP

σ2
P

W(t) (25)

U = {U(t), t ≥ 0} is a Lèvy process on(Ω,F ,F,P) with generating triplet
( γQ−γP

σ2
P

,0,− (γQ−γP)2

2σ2
P

)
which

corresponds to results of Theorem 5.2. The derivative processD = {D(t), t ≥ 0} is then the exponen-
tial of U and also Dolean-Dade exponential,

D(t) = exp

{

− (γQ− γP)2

2σ2
P

t +
γQ− γP

σ2
P

W(t)

}

(26)

These results for 2-stable Lèvy motion are not very surprising as we could derive the same very nicely
and moreove claim even more also about the martingale property by using the famous Girsanov the-
orem.

The more interesting for us is then the case forα ∈ (0,2). We obtain rather surprising result
which we formulate into following corollary. Consider two filtered probability spaces(Ω,F ,F,P)
and(Ω,F ,F,Q) .

Theorem 5.3 Let(LαP,βP
,P) and(LαQ,βQ

,Q) beα−stable L̀evy motions onR with parametersαP,αQ ∈
(0,2), βP,βQ ∈ [−1,1] and drift termsγP,γQ ∈ R. Then the probability measures Pt and Qt are equiv-
alent, for all t≥ 0, if and only if at onceαP = αQ andβP = βQ andγP = γQ.

Contrary to case whenα = 2 where we have possibility to change and if necessary completly
remove the drift term ofα−stable Lèvy motion , in pure jump case we can neither change the stability
parameter, nor the skewness of the distribution of the increments of the process. This implies that we
can neither change the behaving of small jumps nor big jumps of the process and further we even
cannot alter the drift part of the process.

Proof 1 Considerα−stable L̀evy motion(LαP,βP,P), (LαQ,βQ,Q) with characteristic triplets(0,νP,γP),
(0,νP,γP) respectively.
γP andγQ are real numbers and L̀evy measures are of the form

νP(dx) =
c+

P

xαP+11{x>0} +
c−P

|x|αP+11{x<0} for 0 < αP < 2 and c+P ,c−P ≥ 0,c+
P +c−P > 0

νQ(dx) =
c+

Q

xαQ+11{x>0} +
c−Q

|x|αQ+11{x<0} for 0 < αQ < 2 and c+Q,c−Q ≥ 0,c+
Q +c−Q > 0
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We now use Theorem 5.1 to state conditions on stability and skewness parameters. Without lost of
generality we can work only on the positive half-axis of the real line. For this reason we simplify the
notation for L̀evy measures

νP(dx) =
cP

xαP+1 for 0 < αP < 2 and cP ≥ 0,x > 0

νQ(dx) =
cQ

xαQ+1 for 0 < αQ < 2 and cQ ≥ 0,x > 0

1. MeasuresνP and νQ have to have same support. This holds if at once cP > 0 and cQ > 0 or
cP = 0 at the same time cQ = 0.

2. Further, for L̀evy measures must hold the condition on the finiteness of the Hellinger distance
between these measures, stated as:
consider functionφ(x) defined as the logarithm of density of Lèvy measureνQ with respect to

Lèvy measureνP, i.e. dνQ

dνP
= eφ(x), such that

Z ∞

0
(eφ(x) −1)2νP(dx) < ∞

The functionφ(x) is then

φ(x) = log

(
cP

cQ
x(αP−αQ)

)

which states further condition on cP > 0 and from previous even cQ > 0.
We need to investigate finiteness of the integral

cP

Z ∞

0

(√
cQ

cP
x(αP−αQ)/2−1

)2 dx
x1+αP

The latter can be rewriten as
Z ∞

0

( √
cQ

x(αQ+1)/2
−

√
cP

x(αP+1)/2

)2

dx =

Z ∞

0

(
cQ

x(αQ+1)
+

cP

x(αP+1)
−

2
√

cPcQ

x(αP+αQ)/2

)

dx

Consider first thatαP 6= αQ. The integral diverges and the Hellinger distance of these measure
is thus not finite. The choice cP and cQ does not play a role in this situation.
Condsider then thatαP = αQ. The integral can be rewritten into simplier form

Z ∞

0

(
√

cP−√
cQ)2

xα+1 dx

From there is obvious that the intergal will be finite only when cP = cQ.
The conclusion is that measuresνP andνQ has to be identical.

3. The last condition in Theorem 5.1 is the restriction on thedrift term. From absence of Gaussian
term and equality of the L̀evy measures follows thatγQ = γP.

The last which needs to be checked is the equality of skewnessparametersβP = βQ. It follows easily
from the relationship between skewness parameterβP and parameters of L̀evy measure c+P ,c−P . Recall

that βP =
c+

P−c−P
c+

P +c−P
and c+P = c+

Q,c−P = c−Q.

Q.E.D

We investigated the situation only forα−stable Lèvy motion onR. It would need to be checked
and proved if the same situation holds also forR

d with d ≥ 2.
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